

Half Term 1 Science Year 11

Name: _	 	 	
Tutor			

Example Year 11 Homework Timetable

Monday	Ebacc Option D	Option C	Modern Britain	
Tuesday	English	Tassomai	Option B	Option A
Wednesday	esday Sparx Science		Modern Britain	Option C
Thursday	Ebacc Option Tassomai		Option B	
Friday	Sparx	Science	English	Option A

Block A	Block B	Block C	Block D
Art	Business Studies	Art	French
Dance	Child Development	Business Studies	Geography
Drama	Catering	Geography	History
Media Studies	Computer Science	Health & Social Care	
Music	Drama	History	
Photography	Health & Social Care	Catering	
	IT	Photography	
	Media Studies	Sport	
	Sociology	Travel & Tourism	
	Sport		

Tassomai - 2 Daily Goals per week Sparx - 4 tasks of Sparx per week

Year 11 - Homework Plan Science

Week/Date	Homework Task	Examination Question
Week 1 5th September 2022	Cornell Notes on factors affecting rates of reaction.	Answer the questions on rates of reaction.
Week 2 12th September 2022	Revision Cards on the required practical for rates of reaction	Answer the questions on rates of reaction.
Week 3 19th September 2022	Cornell Notes on reversible reactions	Answer the questions on reversible reactions.
Week 4 26th September 2022	Revision Cards on mains electricity and the national grid	Answer the questions on the national grid.
Week 5 3rd October 2022	Cornell Notes on electromagnetism	Answer the questions on electromagnetism.
Week 6 10th October 2022	Revision Cards on specific heat capacity	Answer the questions on specific heat capacity.
Week 7 17th October 2022	Cornell Notes on vaccinations	Answer the questions on vaccinations.

Biology		Chemistry		Physics	
Keyword	Definition	Keyword	Definition	Keyword	Definition
Phagocytes	Cells, such as white blood cells, that engulf and absorb waste material, harmful microorganisms in the bloodstream and tissues.	Closed system	In chemistry, a system in which no substances can enter or leave during a reaction.	National grid	The network that connects all of the power stations in the country to make sure that everywhere has access to electricity.
Vaccine	Substances containing disabled antigens of a particular disease, usually administered via injection. Vaccines stimulate the body to produce antibodies to provide immunity against that disease.	Concentration	A measure of the mass or amount of solute dissolved in a given volume of solvent or solution.	Power	The energy transferred each second, measured in watts (W). power = current × potential difference or power = current² × resistance
Antibody	A protein produced by the immune system in humans	Reversible reaction	A chemical reaction which can go both ways.	Magnetic field	Area surrounding a magnet that can exert a force on magnetic materials.
Antibiotic	Substances that control the spread of bacteria in the body by killing them or stopping them reproducing.	Exothermic	Reaction in which energy is given out to the surroundings.	Electromagnet	A magnet made by wrapping a coil of wire around an iron bar and passing an electric current through the coil.
Antibiotic resistance	The ability of bacteria to survive exposure to antibiotics. It is caused by mutations in their genes.	Endothermic	Reaction in which energy is taken in.	Specific heat capacity	The amount of energy needed to raise the temperature of 1 kg of substance by 1°C.
Placebo	An inactive substance made to resemble a drug for researchers to use as a control.	Moles	The amount of substance that contains the same number of particles as there are atoms in 12 g of carbon-12	Specific latent heat	The amount of energy needed to melt or vaporise 1 kg at its melting or boiling point.
Xylem	Narrow, hollow, dead tubes with lignin. Transports water and minerals in plants.	Reactant	A substance that reacts together with another substance during a chemical reaction.	Transverse wave	A wave that moves in the same direction as the direction in which the particles are vibrating.
Phloem	The tissue in plants that transports sugars and amino acids.	Product	A substance formed in a chemical reaction.	Longitudinal wave	A wave that moves in a direction at right angles to the way in which the particles are vibrating.
Transpiration	The loss of water from leaves by evaporation through the stomata.	Equilibrium	When the forward and backward reactions happen at the same rate.	Amplitude	The maximum displacement of a point on a wave away from its undisturbed position.
Translocation	The movement of food molecules/sugars through the phloem.	Uncertainty	The interval within which the true value of a quantity can be expected to lie.	Frequency	The number of waves passing a point each second.
Most Important Fact					
protection against specific the amount of people vacc Plants, unlike animals, car process called photosynth During photosynthesis, pla	n make their own food. They do this using a	equilibrium. The	ns are reversible and may reach a dynamic position of equilibrium of a reversible reaction can nging the reaction conditions.	to power electric throughout the c Electromagnetis	ow either as direct or alternating current, and is used in homes al appliances. The National Grid distributes electricity ountry. m is due to the magnetic fields around electric currents. The forces with other nearby magnets which can be used to make

WEEK 1

Date
State the effect that increasing the temperature of the sodium thiosulfate solution has on the rate of the reaction.
Explain this effect in terms of particles and collisions.
Answer:-

Dete	WEEK
Date	
A student investigated the rate of the reaction between magnesium and dilute hydrochloric acid.	
The student used the apparatus shown in Figure 1 to collect the gas produced.	
Figure 1	
Gas syringe 50 100 cm ³ Dilute hydrochloric acid Magnesium	
Outline a plan to investigate how the rate of this reaction changed when the concentration of the hydrochloric acid was changed.	,
 Describe how you would do the investigation and the measurements you would make. Describe how you would make it a fair test. 	
You do not need to write about safety precautions.	

Date.		
1.		
(c)	Nitrogen is used to make ammonia.	
	The word equation for the reaction is:	
	nitrogen + hydrogen ammonia	
	Write the correct symbol in the equation to show that it is a reversible reaction.	
/d\	A reversible reaction can reach equilibrium	(1)
(d)	A reversible reaction can reach equilibrium. Complete the sentence.	
	Equilibrium is reached when the forward reaction and the reverse reaction happen	
	at the same	
		(1)
(e)	Fertilisers are formulations containing nitrogen.	
	What is a formulation?	
		(1)
2.		
_	drated copper sulphate is a blue solid. When it is heated, white solid anhydrous copper phate is made. This is a reversible reaction.	
hyd	drated copper sulphate [+ heat energy] = anhydrous copper sulphate + water (blue) (white)	
(a)	To make the forward reaction work, the hydrated copper sulphate must be heated all the time.	
	What type of reaction is this?	

Anhydrous copper sulphate can be used in a test for water. What two things will happ when water is added to anhydrous copper sulphate?	en
1	
2	
	(2

(2)

Date	WE
The National Grid is used to transfer electrical power around the country.	
Figure 1 shows a simplified diagram of the National Grid.	
Figure 1	
Transmission cables 132 000 V Power station Step-up Step-down Consumer 25000 V transformer 230 V (a) The gas-fired power station shown in Figure 1 uses a non-renewable energy resource. Some power stations use renewable energy resources. What is the difference between renewable and non-renewable energy resources?	
(b) Explain how transformers are used in the National Grid.	(2)

Data	
Daic	

Figure 2 shows an electromagnet being used to lift a car in a scrapyard.

An electromagnet is a solenoid.

Explain why it is better to use an electromagnet rather than a permanent magnet in a scrapyard.

You should include a comparison of the properties of electromagnets and permanent magnets in your answer.

Date		WEEK
A '	can-chiller' is used to make a can of drink colder.	
Fig	gure 1 shows a can-chiller.	
	Figure 1	
	Can of drink	
(a)	The can-chiller decreases the temperature of the liquid in the can by 15 °C. The mass of liquid is 0.33 kg. The specific heat capacity of the liquid is 4200 J / kg °C.	
	Calculate the energy transferred from the liquid as it cools.	
	Energy = J	
		(2)
(b)	Complete the following sentence.	
	The specific heat capacity of a substance is the amount of energy required to	
	change the of one kilogram of the	
	substance by one degree Celsius.	(4)
		(1)
(c)	To calculate the specific heat capacity of a material, the mass of the material needs to be measured.	oe
	State the name of a measuring instrument used to measure mass.	

(d) The back of the can-chiller has cooling fins, as shown in Figure 2.

Figure 2

The cooling fins increase the rate of energy transfer from the can-chiller to the surroundings.

Complete the following sentences.	
The cooling fins are a	_ colour because that makes them
good emitters of infrared radiation.	
The large surface area of the cooling fins all	ows the air around the can-chiller
to gain energy guickly and rise, transferring	eneray by

Give two ways in which white blood cells protect us from disease.	
1	
2	
Explain, as fully as you can, how immunisation protects us from disease.	
	(Total 5 m

STEP 2:		
CREATE		
CUES		
COES	STEP 1: RECORD YOUR NOTES	
What: Reduce your		
notes to just the essentials.	What: Record all keywords, ideas, important dates, people, places, diagrams	
What: Immediately	and formulas from the lesson. Create a new page for each topic discussed.	
after class,	When: During class lecture, discussion, or reading session.	
discussion, or	Which burning class recture, discussion, or reading session.	
reading session.	How:	
How: Jot down key	Use bullet points, abbreviated phrases, and pictures Avoid full sentences and paragraphs	
ideas, important	 Leave space between points to add more information later 	
words and phrases	Why: Important ideas must be recorded in a way that is meaningful to you.	
 Create questions 		
that might		
appear on an exam		
 Reducing your 		
notes to the most important		
ideas and		
concepts improves recall.		
Creating		
questions that		
may appear on an exam gets		
you thinking		
about how the information		
might be applied		
and improves your		
performance on		
the exam.		
Why: Spend at least ten minutes		
every week		
reviewing all of your previous		
notes. Reflect on		
the material and ask yourself		
questions based		
on what you've		
recorded in the Cue area. Cover		
the note-taking		
area with a piece of paper. Can you		
answer them?		

STEP 3: SUMMARISE & REVIEW

What: Summarise the main ideas from the lesson.
What: At the end of the class lecture, discussion, or reading session.
How: In complete sentences, write down the conclusions that can be made from the information in your notes.

Why: Summarising the information after it's learned improves long-term retention.

Date / / Topic WEK 1

Questions	Notes

Questions	Notes

Date / / Topic WEEK 3

Questions	Notes

Questions	Notes

Date / / Topic WEEK 5

Questions	Notes

Questions	Notes

Date / / Topic WEEK 7

Questions	Notes

Questions	Notes

Revision Page

Revision Page

Revision Page

Revision Card on the required practical for rates of reaction

- 1. What equipment is needed to measure the volume of a gas?
- 2. What factors that affect the rate of a reaction could you investigate?
- Describe what equipment is needed to investigate how concentration affects the rates of reaction with sodium thiosulphate and acid.
- 4. What is a controlled variable?

Answers

Revision Card on mains electricity and the national grid

- 1. What is the mains voltage value in this country?
- 2. What is the frequency of mains electricity?
- 3. What colour is the live wire?
- 4. Describe a step up transformer
- 5. Describe a step down transformer.

Answers

Revision Card on specific heat capacity

- 1. Define specific heat capacity
- 2. List the equipment needed to investigate the specific heat capacity of a metal block.
- 3. What happens to the molecules in a liquid as it gets hotter?
- 4. What is the unit for specific heat capacity?
- 5. What is the unit for temperature change?

Answers