
Half Term 1

Computer Science
Year 11

Name: ______________________________

Tutor: _______________________________

Year 11 Homework Timetable

Monday Ebacc Option
D Option C Modern

Britain

Tuesday English Tassomai Option B Option A

Wednesday Sparx Science Modern Britain Option C

Thursday Ebacc Option
D Tassomai Option B

Friday Sparx Science English Option A

Tassomai - 2 Daily Goals per week
Sparx - 4 tasks of Sparx per week

Year 11 Homework Plan

Week/Date Homework Task Examination Question Topic

Week 1
Monday 5th
September 2022

Cornell Notes
Bubble Sort
Insertion Sort
Merge Sort

Bubble Sort

Week 2
Monday 12th
September 2022

Insertion Sort

Week 3
Monday 19th
September 2022

Merge Sort

Week 4
Monday 26th
September 2022 Cornell Notes

Defensive Design

Examples of defensive design strategies

Week 5
Monday 3rd October
2022

Functions and procedures

Week 6
Monday 10th October
2022 Cornell Notes

Testing

Purpose of testing

Week 7
Monday 17th October
2022

Syntax and Logic Errors

https://docs.google.com/document/d/1za8ziQUsy-ZYRX3bJ_dck6V9RynclAMp-i_Gs1uBQaU/edit#

QR codes and links to videos are included in each topic.
You should use these videos alongside the Knowledge Organiser to make detailed Cornell Notes / Revision Cards each week.

Week 1, 2 and 3: 2.1.3 Bubble Sort | Merge Sort | Insertion Sort

Bubble Sort Sorts an unordered list of items by
comparing each item with the next one
and swaps them if they are out of
order. The algorithm finishes when no
more swaps need to be made. In effect
it ‘bubbles up’ the largest (or smallest)
item to the end of the list with each
‘pass’. Very inefficient but easy to
implement so can be used for very
small data sets.

Merge Sort Uses a divide and conquer
methodology. Data set is repeatedly
split in half until each item is in its own
list. Then pairs of lists are merged
together in the correct order. Very
efficient and works well with large data
sets.

Insertion
Sort

Inserts each item into its correct
position in a data set, one item at a
time. Useful for inserting items into a
list that is already sorted.

https://www.youtube.com/watch?v=aOZBMnTswL8&list=PLCiOXwirraUAEhj4TUjMxYm4593B2dUPF&index=59
https://www.youtube.com/watch?v=Y8y7PnlE4Dg&list=PLCiOXwirraUAEhj4TUjMxYm4593B2dUPF&index=60
https://www.youtube.com/watch?v=jmdP4Y-x0Hc&list=PLCiOXwirraUAEhj4TUjMxYm4593B2dUPF&index=61
https://www.youtube.com/watch?v=jmdP4Y-x0Hc&list=PLCiOXwirraUAEhj4TUjMxYm4593B2dUPF&index=61

Week 4 and 5: 2.3.1 Defensive Design - Validation, Misuse, Authentication, Maintainability

Input Validation

Input
Validation
involves
checking data
that is input
by a user

meets specific rules or
criteria.

Type Check
Data must be the correct
data type (integer, string,
float, character, etc)

Range Check
Data must fall between a
certain range of values. For
example, between 1 and 10,
or between ‘a’ and ‘z’.

Presence Check
Ensures that some data has
been entered.

Format Check
Data is in the correct format.
For example, a date is in the
format 23/12/2021

Length Check
Data must have a specific
number of characters. For
example, a password might
be required to be at least 8
characters in length.

Anticipating Misuse | Authentication

Division by Zero
The arithmetic logic unit inside a
processor cannot compute a division
by zero, therefore well-designed
code should prevent this from
occurring

Communication Error
Online systems required connections to host
servers, usually through the Internet. If a connecting
is lost or the server is overloaded, the program may
crash or hang. Well-designed code should allow
users to cancel a connection request or the program
should report an error if there is no connection with
a remote server.

Printer / other peripheral errors
If a program prints data, the programmer shouldn’t
assume the printer was successful and should
provide options to ‘reprint’.

Disk Errors
Programs that read and write to files need to handle
errors such as:

● File or folder not found
● No space on disk to save
● Corrupt data files
● Reaching the end of a file when reading

data.

Authentication
Data used by systems should be secure.
Programmers should ensure that users are
authenticated (for example, with a login username
and password) and data files are encrypted so they
can’t simply be opened with another program..

Maintainability

Programmers need to
ensure that the code that
they write is ‘maintainable’.
This includes the following:

Comments
Comments should explain the purpose of
the program or a section of code. They
may also explain complicated sections of
code or unusual approaches.

White Space
Sections of code can be spaced out so
that it isn’t cramped together, therefore
easier to read.

Indentation
Some programming languages (like
Python) forces programmers to indent
code so that the flow of the program can
be followed.

Identifier Names
Use sensible identifiers for variables when
programming so that others can
understand what each variable is being
used for.

Sub Programs
Use procedures and functions to structure
code and eliminate duplicating portions of
the same code. As well as reducing the
amount of code, if the program needs to
be changed, it can be done once in the
sub program.

https://www.youtube.com/watch?v=2IIF4Infdf4&list=PLCiOXwirraUAEhj4TUjMxYm4593B2dUPF&index=74
https://www.youtube.com/watch?v=8I0il6GQbTo&list=PLCiOXwirraUAEhj4TUjMxYm4593B2dUPF&index=75
https://www.youtube.com/watch?v=YwW_fBw1eCY&list=PLCiOXwirraUAEhj4TUjMxYm4593B2dUPF&index=76

Week 6 and 7: 2.3.2 Testing

The purpose of and types of
testing

Four main
reasons for
testing
● To ensure
there are no
errors (bugs)
in the code.

● To check the program
has an acceptable
performance and
usability.

● To ensure unauthorised
access is prevented.

● To check if the program
meets the requirements
of the user.

Iterative Testing
● Each new module

(section of code) is tested
as it is written.

● Program branches (if
statements or loops) are
checked to make sure
they work,

● Check new modules don’t
introduce new errors in
existing code.

Final (Terminal) Testing
● Testing all modules work

together.
● Testing the program

produces the required
results.

● Checking the program
meets the requirements
of the user.

Syntax and Logic Errors

Syntax Errors
A syntax error occurs when code
written does not follow the rules
of the programming language. A
program will not run if it has
syntax errors. Any such errors

must be fixed first. A good integrated
development environment (IDE) will usually point
out any syntax errors to the programmer.

Examples of syntax errors:
● misspelling a statement, eg writing pint

instead of print
● using a variable before it has been declared
● missing brackets, eg opening a bracket but

not closing it

Logic Errors
A logic error is an error in the way a program
works. The program simply does not do what it
is expected to do. Unlike a syntax error, a logic
error will not usually stop a program from
running. Instead the program will run but not
function as expected.

Examples of logic errors:

● incorrectly using logical operators, eg
expecting a program to stop when the value
of a variable reaches 5, but using <5 instead
of <=5

● incorrectly using Boolean operators
● unintentionally creating a situation where an

infinite loop may occur
● incorrectly using brackets in calculations
● unintentionally using the same variable name

at different points in the program for different
purposes.

Suitable Test Data

When
testing
software,
you should
use normal,
boundary,

invalid and erroneous
inputs.

Normal Inputs
Data which should be
accepted by a program
without causing errors

Boundary Inputs
Data of correct type on the
edge of accepted validation
boundaries

Invalid Inputs
Data of the correct type but
outside accepted validation
checks

Erroneous Inputs
Data of the incorrect type
which should be rejected
by a computer
system. This includes no
input being given when one
is expected.

Refining
Algorithms

Code should
anticipate all
inputs and it
should deal
with ‘bad’ data,
or missing
data, and not
crash.

It should
ensure
prompts to the
user are helpful
and that the
input can only
be of the
correct type

https://www.youtube.com/watch?v=ZQosUUL5Y54&list=PLCiOXwirraUAEhj4TUjMxYm4593B2dUPF&index=77
https://www.youtube.com/watch?v=ZQosUUL5Y54&list=PLCiOXwirraUAEhj4TUjMxYm4593B2dUPF&index=77
https://www.youtube.com/watch?v=upt_QTi0id8&list=PLCiOXwirraUAEhj4TUjMxYm4593B2dUPF&index=78
https://www.youtube.com/watch?v=FbnEBkN_Nko&list=PLCiOXwirraUAEhj4TUjMxYm4593B2dUPF&index=79
https://www.youtube.com/watch?v=pBz6YoFID0Y&list=PLCiOXwirraUAEhj4TUjMxYm4593B2dUPF&index=80
https://www.youtube.com/watch?v=pBz6YoFID0Y&list=PLCiOXwirraUAEhj4TUjMxYm4593B2dUPF&index=80

WEEK 1
Date…………………………………………….

Willow has created a hangman program that uses a file to store the words the program can select from.
A sample of this data is shown below:

crime bait fright victory nymph loose

Show the stages of a bubble sort when applied to the data shown

[4 marks]

WEEK 2
Date…………………………………………….

The following names of students are stored in an array with the identifier studentnames.

studentnames = ["Rob", "Anna", "Huw", "Emma", "Patrice", "Iqbal"]

The names of students are sorted into ascending alphabetical order using an insertion sort.

Complete the following diagram to show the stages an insertion sort would take to complete this task.

Each row represents one pass of the insertion sort algorithm. You may not need to use all empty rows.

Rob Anna Huw Emma Patrice Iqbal

[4 marks]

WEEK 3
Date…………………………………………….

A library gives each book a code made from the first three letters of the book title in upper case, followed
by the last two digits of the year the book was published.

For example, “Poetry from the War”, published in 2012 would be given the code POE12.
The library sorts their books based on the book code.

Show the steps that a merge sort would take to put the following list of book codes into ascending
alphabetical order (from A to Z).

POE12 BAC97 FLY77 JAV16 TAL86 AND18 ZAR09 HOP86

Show the stages of a bubble sort when applied to the data shown

[4 marks]

WEEK 4
Date…………………………………………….

Elliott plays football for OCR FC. He wants to create a program to store the results of each football match they
play and the names of the goal scorers. Elliott wants individual players from the team to be able to submit this
information.

Describe two examples of defensive design that should be considered when developing this program.

WEEK 5
Date…………………………………………….

A library gives each book a code made from the first three letters of the book title in upper case, followed by
the last two digits of the year the book was published.

For example, “Poetry from the War”, published in 2012 would be given the code POE12.
Functions and procedures are both examples of sub programs.

Describe one difference between a function and a procedure.

[2 marks]

Describe two benefits to a programmer of using sub programs.

[4 marks]

WEEK 6
Date…………………………………………….

A computer program has been written to control a vending machine. The vending machine is tested before it is
released.

Explain the purpose of testing the vending machine.

[2 marks]
 
 
 
Describe the difference between iterative testing and final testing.

[2 marks]

WEEK 7
Date…………………………………………….

Louise writes a program to work out if a number entered by the user is odd or even. Her first attempt at this
program is shown.

01 num = input(“enter a number”)
02 if num MOD 2 >= 0 then
03    print(“even”)
04 else
05    pritn(“odd”)
06 endif

The program contains a logic error on line 02.

i. State what is meant by a logic error.

[1 mark]
 
ii Give a corrected version of line 02 that fixes the logic error.

[1 mark]

The program contains a syntax error on line 05.

i State what is meant by a syntax error.

[1 mark]

ii Give a corrected version of line 05 that fixes the syntax error.

[1 mark]

Date / / Topic WEEK 1

Questions Notes

Summary

Date / / Topic WEEK 2

Questions Notes

Summary

Date / / Topic WEEK 3

Questions Notes

Summary

Date / / Topic WEEK 4

Questions Notes

Summary

Date / / Topic WEEK 5

Questions Notes

Summary

Date / / Topic WEEK 6

Questions Notes

Summary

Date / / Topic WEEK 7

Questions Notes

Summary

Revision Page

